2649

(10×4=40 Marks)

Reg. No.:....

Name:.....

Seventh Semester B.Tech. Degree Examination, May 2013 (2008 Scheme) 08.702 : DESIGN AND ANALYSIS OF ALGORITHMS (R)

Max. Marks: 100 Time: 3 Hours

PART - A

Answer all questions.

1. Define omega notation for a function f(n).

- 2. Derive the time complexity of quicksort algorithm.
- 3. What is a recursion tree? Construct one for T(n) = 2T(n/2) + n.
- 4. Show that $\log (n!) = \theta$ (n $\log n$).
- Explain strongly connected components.
- 6. Insert the following keys in order; starting with an empty Red Black Tree: 10, 20, 50, 80, 1000, 1020.
- 7. Explain the properties of a Red Black Tree.
- 8. Explain NP-hardness with an example.
- 9. Explain dynamic programming.
- 10. Are all NP-complete problems NP-hard? Justify.

PART-B

Answer one question from each Module.

MODULE-I

11. a) Using substitution method solve

$$T(n) = \begin{cases} 2T \left(\begin{bmatrix} n/2 \end{bmatrix} \right) + 1, & n > = 2 \\ 1, & n = 1 \end{cases}$$

b) Solve $T(n) = 8T(n/2) + n^2$ by iteration method.

12. Give an algorithm for performing heapsort. Derive an expression for its running time. Explain with an example.

10

10

20

MODULE-II

13.	Ho	w is deletion performed in	
	a)	B-trees?	
	b)	RB trees ? Give algorithms.	20
		xeM OR awell & : emit	
14.	a)	Explain Prim's algorithm and find its time complexity.	10
	b)	Give an algorithm for graph traversal. Analyse the algorithm.	10
		MODULE – III	
15.	a)	Solve travelling salesman problem using greedy algorithm.	10
	b)	How does 0-1 knapsack problem differ from fractional knapsack problem? OR	10
16.	a)	Give an algorithm to solve the 8-Queen's problem.	10
r	b)	Give a dynamic programming solution to 0-1 Knapsack problem.	10